

AFRL-RI-RS-TR-2009-258
Final Technical Report
November 2009

EFFICIENT AND SECURE REPOSITORY ACCESS

Net-Scale Technologies, Inc.

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No.AQ04/00

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2009-258 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
STEVEN FARR JULIE BRICHACEK
Work Unit Manager Chief, Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

NOVEMBER 2009
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

June 2008 – June 2009
4. TITLE AND SUBTITLE

EFFICIENT AND SECURE REPOSITORY ACCESS

5a. CONTRACT NUMBER
FA8750-08-C-0219

5b. GRANT NUMBER
 N/A

5c. PROGRAM ELEMENT NUMBER
62304E

6. AUTHOR(S)

Urs A. Muller, Alan Plofker, Chris Crudele, Paula Muller, and Beat Flepp

5d. PROJECT NUMBER
C4IE

5e. TASK NUMBER
06

5f. WORK UNIT NUMBER
03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Net-Scale Technologies, Inc.
281 State Highway 79
Morganville, NJ 07751-1157

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RISE
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2009-258

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW-2009-4838, Date Cleared: 16-Nov-2009

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The principal contractor, in collaboration with the Corporation for National Research Initiatives (CNRI) demonstrated
interoperability and secure sharing between three Digital Object Repository (DOR) and between the DOR repositories and a legacy
system as specified in the Use Case of this project. Documentation was delivered on the architecture and the protocols in sufficient
detail to allow an independent third party to develop its own DOR implementation and/or to develop a DOR interface to a legacy
system. Net-Scale's efforts focused on: a) design and implement an access client for the Digital Object Architecture (DOA)
repository created by CNRI, b) design and implement a functional and performance test suite for the CNRI software, and c) analyze
the initial test results, identify possible weak points, and make recommendations for improvements.

15. SUBJECT TERMS
document repository; shared workspace; document collaboration; shared documents; digital object archive; uniform repository
interface; secure repository access

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

84

19a. NAME OF RESPONSIBLE PERSON
Steven Farr

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS

1. PROJECT GOAL .. 1
2. BACKGROUND .. 1
3. PROJECT OVERVIEW ... 1

3.1. Operational Use Case ... 2
4. HIGH-LEVEL PROJECT PLAN ... 5

4.1. Interoperability and Secure Sharing Demo Work Items 5
4.2. Testing Effort ... 6
4.3. DOSR Use Cases ... 7

5. DELIVERABLES ... 8
5.1. Documentation of Prototype System ... 8
5.2. Documentation of Testing Effort .. 8
5.3. Conceptual Analysis of the Five DOSR Use Cases 8

6. WEB CLIENT DESIGN ... 9
6.1. Background ... 9
6.2. Web Client Purpose .. 9
6.3. Web Client Design Overview .. 9
6.4. ZFP Web Client Functionality Overview .. 11

7. REQUIREMENTS ... 12
8. JAVA APPLET .. 12

8.1. Purpose ... 12
8.2. Design ... 12

9. FUNCTIONAL LIST .. 14
9.1. Stage 1 .. 14
9.2. Stage 2 .. 14

10. TEST METHODOLOGY ... 15
10.1. Expected Results ... 15
10.2. Data Set ... 15

11. TEST ENVIRONMENT ... 16
11.1. Network Configuration .. 16
11.2. Test Tools and Interfaces ... 16

12. USE CASES ... 17
12.1. Functional Use Cases .. 17

13. TEST CASES ... 19
13.1. Functional Test Cases ... 19

14. INITIAL TEST EXECUTION ... 21
14.1. Demonstration of Test Suite Functionality .. 21

ii

15. TEST SUITE METHODOLOGY ... 24
15.1. Overview .. 24
15.2. Configuration .. 25
15.3. Operations.. 25
15.4. Test Results ... 26

16. TEST SUITE ARCHITECTURE .. 26
16.1. Overview .. 26
16.2. Modules ... 27
16.3. Test Data ... 29
16.4. Test scripts ... 30
16.5. Java Interface Modules .. 30
16.6. Logging and Log Files .. 31

16.6.1. Logging .. 31
16.6.2. Log Files .. 31

17. HOW TO RUN THE TEST SUITE .. 33
17.1. Edit the Configuration ... 33
17.2. Initialize the Environment ... 33
17.3. Run the Scripts ... 33
17.4. Interpret the Results ... 34

18. ADVANCED TOPICS ... 35
18.1. Replay .. 35
18.2. Customizing a Test Execution .. 35

18.2.1. Adding Test Files ... 35
18.2.2. Configuring testconfig.pm .. 35

18.3. How to Add a Test Case .. 36
18.3.1. Configuration: testconfig.pm .. 36
18.3.2. Main Test Loop: testdor09.pl ... 36
18.3.3. Test Case Function: testfunc.pm ... 37
18.3.4. Java Test Case Function: testdor.java 37
18.3.5. Compile the Test Suite .. 37

19. SAMPLE TEST RESULTS ... 38
20. PERFORMANCE TEST PLAN ... 41
21. METHODOLOGY ... 41

21.1. Data Set ... 41
21.2. Test Results ... 42

22. TEST ENVIRONMENT ... 42
22.1. Network Configuration .. 42
22.2. Test Tools .. 42

23. TEST CASES ... 43

iii

24. TEST CASE RESULTS .. 45
24.1. Hardware Configuration ... 45
24.2. Observations and Notes ... 46

24.2.1. Test Execution Methodology ... 46
24.2.2. Observations ... 48

24.3. Test Results ... 49
24.3.1. SCP Reference Tests .. 49
24.3.2. Upload – 1, 5 and 50 Users ... 52
24.3.3. Download – 1 and 5 Users .. 55
24.3.4. Search – 1 and 5 Users ... 58

24.4. Test Results – Random Data / Random Operations 60
24.4.1. 1, 5 and 50 Users .. 60

24.5. Test Results – Duration Tests .. 62
24.5.1. 1 Day Test ... 63
24.5.2. 5 Day Test ... 65
24.5.3. 10 Day Test ... 65

25. CONCLUSIONS ... 66
26. TEST DATA .. 67

26.1. Test Files.. 67
27. LESSONS LEARNED ... 68

27.1. Internal Use of the Repository System for Collaboration 68
27.2. Allow Existing User Paradigms to Co-exist with New Functionality .. 68
27.3. Ensure that the Core Repository Functionality Can Support Different
Use Models ... 68

28. FUTURE WORK ... 70
28.1. Reduce Administrative Complexity ... 70
28.2. Further Mechanisms to Support Sharing of Digital Objects 71
28.3. Additional Mechanisms for Group Management 71
28.4. Study Efficiency of Indexing and Search .. 72
28.5. Further Study of Encryption Techniques .. 73

28.5.1. Observations ... 73
28.6. Additional Testing of Repository Mirroring.. 74
28.7. Conduct Usability Studies .. 74

REFERENCES ... 75
LIST OF ACRONYMS…………………………………………………………………

iv

LIST OF FIGURES

Figure 1: Interoperability and secure sharing between four repositories. 4
Figure 2: Graphical time line of the project components. 6
Figure 3: Clients accessing DO Repositories. ... 10
Figure 4: Net-Scale client design using web technology. 10
Figure 5: Net-Scale Java Applet design. ... 13
Figure 6: DOR - Net-Scale Test Environment ... 16
Figure 7: Net-Scale Test Suite Interface to DO Repository 16
Figure 8: Test #2 ... 22
Figure 9: Test #3 ... 22
Figure 10: Minimum and Maximum Times Per Operation. 23
Figure 11: Test Suite Architecture ... 27
Figure 12: Test Suite Modules .. 28
Figure 13: SCP Reference Test 11 MB File Copy ... 51
Figure 14: Average Time per User using 11 MB and Random Data Files 54
Figure 15: Goodput per User using 11 MB and Random Data Files 55
Figure 16: Average Time per User using 11 MB and Random Data Files 57
Figure 17: Goodput per User using 11 MB and Random Data Files 58
Figure 18: Average Time per User Using 11 MB and Random Files 60
Figure 19: Random Operations using Random Data .. 62
Figure 20: 1 Day Test – Average Time per User for Random Operations 63
Figure 21: 1 Day Test – Goodput per User for GET and PUT 64
Figure 22: 1 Day Test – Operation per Hour ... 65

v

LIST OF TABLES

Table 1: Responsibilities ... 5
Table 2: Functional Test Groups ... 14
Table 3: Functional Use Cases ... 17
Table 4: Functional Test Cases .. 19
Table 5: Parameters in Testconfig.pm .. 25
Table 6: Test Suite Modules ... 29
Table 7: Frequently Edited Parameters in Testconfig.pm 33
Table 8: Test Case Matrix ... 43
Table 9: Client Workstation Configuration ... 45
Table 10: Server Configuration ... 46
Table 11: SCP Copy from Client to Server (Upload) ... 50
Table 12: SCP Copy from Server to Client (Download) 50
Table 13: Upload – 1, 5 and 50 Users .. 53
Table 14: Download – 1 and 5 Users .. 56
Table 15: Search – 1 and 5 Users .. 59
Table 16: Random Operations - 1, 5 and 50 Users... 61
Table 17: 1 Day Test - 1, 5 and 50 Users ... 63
Table 18: 5 Day Test ... 65
Table 19: Test Files .. 67

1

1. PROJECT GOAL

In the context of a collaboration project carried out with the Corporation for Na-

tional Research Initiatives (CNRI), which goal was to demonstrate interoperability
and secure sharing between three DOR repositories and a legacy system, Net-
Scale's efforts focused on: a) design and implement an access client for the Digi-
tal Object Architecture (DOA) repository created by CNRI, b) design and imple-
ment a functional and performance test suite for the CNRI software, and c) ana-
lyze the initial test results, identify possible weak points, and make recommenda-
tions for improvements. In addition, Net-Scale assisted CNRI to design, test,
document and demonstrate the functionality developed within the scope of the
collaboration project.

2. BACKGROUND

The DOA repository created by CNRI uses new and innovative paradigms for

digital object storage, management, persistent identification and sharing. This
requires the creation of new access client software as existing clients do not
support the unique advantages of the DOA.

3. PROJECT OVERVIEW

This collaboration project with CNRI was an effort to demonstrate, on June

30th 2009, that the DO Architecture can support interoperability and secure shar-
ing across administrative domains and with legacy systems.

In summary, there are four repositories, three of which are Digital Object Re-
positories (DOR1, DOR2 and DOR3) and a legacy Subversion repository (SVN).
There is a collaboration space where users from the different repositories can
have access to files originated in any of the systems. The shared access me-
chanisms are of two types: a) by use of the DOR Identity Management and b) by
use of Negotiated Access among repositories. Type a) is used by DOR1 and
DOR2, while type b) is used by DOR3 and SVN. For SVN to communicate with
the DOR repositories, a DOR interface over HTTPS is required. For users to op-
erate the systems, they will have the choice of two access clients: a) Java client
and b) zero-footprint web client.

2

As stated in the Statement of Work of the collaboration project, the required
capabilities for the overall system were as follows:

1. Create a “shared workspace” between the four systems.
2. Allow users to deposit files/objects in the workspace or remove them, pro-

vided that they have the necessary privileges to do so.
3. Be able to remove access to a workspace without deleting it.
4. Be able to delete a workspace.

In addition to the capabilities described in the use cases, there was a parallel

effort for developing a complete test suite, including stress and performance tests
as well as functional tests, which will increase the reliability and robustness of the
DO Repository both in this project and in its use in any future DARPA projects.

Finally, in preparation for the DOSR DARPA program, five use cases were ex-
plored at the conceptual level. The result of this work resulted in documentation
of the architectural and protocol extensions to the DO Architecture in support of
these use cases.

3.1. Operational Use Case

Assume four repositories. Three are Digital Object Repositories (DOR1,

DOR2, and DOR3), the other, SVN (a popular open source version control sys-
tem, http://subversion.tigris.org/), is not. The owners of the repositories want
some of their users to be able to collaborate by having shared access to files ori-
ginating on any of the systems. The repository owners want to give the users
who originate files the ability to allow or disallow different types of access, e.g.,
read/write, to those files.

The owners of SVN are willing to add a service to their repository that can
communicate over DOR protocols or DOR APIs. Basically, they want their sys-
tem to be a client of the DOR network and proxy access for their users. Their
preference is for the network application layer protocol to be HTTP, as this re-
moves problems dealing with their organization’s firewall policies.

http://subversion.tigris.org/

3

Two of the DOR repositories (DOR1 and DOR2) are in favor of using DOR
Identity Management and object sharing, and agree to do so among themselves.
The DOR3 owners and the SVN repository owners are reluctant to adopt the
DOR’s Identity Management and object to sharing schemes. They do not want
their users to have accounts with other repositories. Furthermore, they do not
want other repository users to access their repository directly but they are willing
to let other repositories access their repository with prior negotiation. They sug-
gest that each system authenticate its own users and validate their access privi-
leges, and that the systems cooperatively maintain a virtual view of the
files/objects so that it appears to the users that the files/objects reside on their
home system. This setup is illustrated in Figure 1.

The required capabilities for the overall system are as follows:

• Create a “shared workspace” between the four systems.

• Allow users to deposit files/objects in the workspace or remove them, pro-
vided that they have the necessary privileges to do so.

• Be able to remove access to a workspace without deleting it.

• Be able to delete a workspace.
The underlying operations of the collaboration should be transparent to the

users. The repositories cooperate over the DOR protocols to maintain consisten-
cy between the data on the systems.

• If a digital object is added to the workspace, it appears instantly on all four
systems.

• If a user deposits a new version of a digital object in the workspace, all
four systems should immediately “see” the new version.

• The digital object appears to be a regular file on the SVN, and a regular
digital object on the DOR repositories.

• If a digital object is removed from the workspace by its owner, it disap-
pears for all other users, but not for the owner.

• If a file is deleted while in the workspace, it disappears completely from all
systems.

4

DOR1
e.g., DARPA

DOR1+2
User

Identities

SVN
e.g.,

General
Dynamics

SVN
User

Identities

SVN-DOR
interface

DOR3
e.g., DTIC

DOR3
User

Identities
HTTP

User 1
DOR1 client

User 3
DOR3 client

User 4
SVN client

No direct connection from
DOR1 and DOR2 clients to
DOR3 or SVN and vice versa

DOR2
e.g., NSF

User 2
DOR2 client

Figure 1: Interoperability and secure sharing between four repositories.

5

4. HIGH-LEVEL PROJECT PLAN

4.1. Interoperability and Secure Sharing Demo Work Items

The work required to extend the current DOR system for the final demonstra-

tion in June 2009 was subdivided into multiple items that are outlined in the table
below:

Table 1: Responsibilities

Work Items Responsible

1. DOR extensions CNRI

2. Java client extensions CNRI

3. SVN interface CNRI

4. Zero-footprint client Net-Scale

5. Test suite development Net-Scale

6. System integration CNRI + Net-
Scale

7. Functional and stress
test

Net-Scale

8. Demo dry runs CNRI + Net-
Scale

6

Figure 2 shows the graphical time line of the above project components.

Apr'09

1

5

6

9

10

DOR Extensions

Java client extensions

SVN Interface

Zero-footprint client

System Integration

Demo dry runs

Oct'08 Dec'08 Feb'09Components Jun'09

Figure 2: Graphical time line of the project components.

4.2. Testing Effort

The system testing effort involves the development of a test suite and its ex-

ecution and reporting at several stages of the development. Net-Scale Technolo-
gies 's responsibilities are:

1. Development, updating, and continued application of a complete test suite
for all functions of the DO Repository.

2. DO Repository documentation at both the system administration and de-
veloper levels.

3. Evolution and maintenance of the Net-Scale zero-footprint web client in
the interoperability and secure sharing demonstration.

7

4.3. DOSR Use Cases

Lastly, we will examine and document the application of the DO Architecture,

including any needed extensions, to a selection of use cases relevant to the up-
coming DOSR program. This will not include any implementation work but will be
done at a sufficient level of detail to guide future implementations. The specific
use cases that will be explored are:

1. Resilience to network attacks (the objects are secure).
2. Provenance: tracking and being able to know who has access to informa-

tion.
3. Secure search.
4. Secure sharing; the party we are sharing with does not have a DOR identi-

ty ("ad-hoc sharing", e.g., using CAC).
5. Automatic assembly of information for "commanders brief" (reuse/extend

results from DARPA PAL program).

8

5. DELIVERABLES

5.1. Documentation of Prototype System

• Project Plan.

• High-level design document.

• Detailed design document.

• Protocol documentation (suitable for third party to use without additional
information).

• Document about “lessons learned” and recommendations for future work.

5.2. Documentation of Testing Effort

• DO Repository functional analysis.

• Test suite design document.

• Functional test suite.

• Functional web client.

• DO Repository system and user administration documentation.

• DO Repository client application developer documentation.

5.3. Conceptual Analysis of the Five DOSR Use Cases

• Conceptual description of the DO Repository architectural and protocol ex-
tensions to support five additional DOSR use cases.

9

6. WEB CLIENT DESIGN

6.1. Background

DARPA-IPTO has requested CNRI and Net-Scale to concentrate their efforts

to build a system composed of four repositories that can demonstrate interopera-
bility and secure sharing among DOR repositories and a SVN legacy system.
This chapter concentrates on the zero footprint (ZFP) web client capabilities to
access the DOR repositories.

6.2. Web Client Purpose

The web client uses web technology and can be launched either through the

web or locally. It does run within a web browser environment on the user's PC or
laptop, and is designed to make the DOR functionality easy to use and intuitive
for end users. Furthermore, the software architecture intends to make porting of
the web client to hand held and wireless devices easy.

6.3. Web Client Design Overview

Figure 3 shows the ZFP web client in the context of the June 2009 demo sys-

tem. This web client provides the same DO Architecture functionality as the Java
client to access the DO Repository with which is connected.

Figure 4 shows the web client design. A user starts by accessing either a pre-
defined URL or by opening a locally installed HTML file. In either case, this loads
the Net-Scale web client into the browser and starts executing its code. The web
client consists of static code including Cascading Style Sheets (CSS) and an in-
itially empty HTML page. All functionality is provided by the dynamic code which
includes JavaScript and a Java applet. The JavaScript code creates HTML ele-
ments dynamically and places or moves them in the browser screen to create the
desired user interface and effects. The CSS code defines the graphical attributes
of the HTML objects. The JavaScript code further interacts with the Java applet.

10

DOR1

Client 1
(CNRI,

Java client)

Client 2
(Net-Scale,
web based)

DOR2

Client 1
(CNRI,

Java client)

Client 2
(Net-Scale,
web based)

DOR1 and 2
User Identit ies

DOR3

Client 1
(CNRI,

Java client)

Client 2
(Net-Scale,
web based)

DOR3
User

Identit ies

SVN
Repository

SVN-DOR
Interface

SVN
client

SVN
User

Identit ies

Shared Workspace

Figure 3: Clients accessing DO Repositories.

User PC or Laptop

Net-Scale
Java

applet

Net-Scale
Java-
Script

Net-Scale
HTML/
CSS

HTTP
or FSWeb server

or local PC
files

Web browser

DOR

DO Access Protocol

Figure 4: Net-Scale client design using web technology.

Note, that no traditional web server applications, such as CGI scripts, are

used, since all necessary software is embedded in the start web page and re-
lated files. This allows a user to start the client from the local file system without
requiring a web server to be available.

11

6.4. ZFP Web Client Functionality Overview

The main web client functionality will be:

• Deposit a Digital Object.

• Retrieve a Digital Object.

• Remove a Digital Object.

• Deposit a Digital Object in shared workspace.

• Retrieve a Digital Object from shared workspace.

• Remove a Digital Object from shared workspace.

• Search, which includes the home repository and the shared workspace.

• Access the local file system.

12

7. REQUIREMENTS

• Demonstrate that the ZFP web client can access full functionality of the
Digital Object Repository supporting interoperability and secure sharing.

• Test functionality of ZFP client.

8. JAVA APPLET

8.1. Purpose

The Java Applet provides processing capabilities in the local device or PC and

the interface to the local resources as well as to the DO Architecture layer
through the DO Protocol and DO Repository APIs. Using Java technology per-
mits portability across platforms. Moreover, encapsulating the processing in an
applet avoid the requirements of client software installation.

8.2. Design

Figure 5 shows the Java Applet design. This Java Applet has three main com-

ponents: a) japnsrep, b) jarnslfs, and japnsrep. Japnsrep interact with the Java-
script to capture and signal user interactions and display of information. Jarnslsf
provides all the processing and access to the local file system, and Jarnsrep pro-
vides all the interfaces to the DOR API, and therefore interaction with the DO Ar-
chitecture layer.

13

User PC or Laptop

jarnsrep

HTTP
or FSWeb server

or local PC
files

Web browser

DOR

DO Access Protocol

japnsrep

japnslsf

Javascript

HTML (CSS)

Figure 5: Net-Scale Java Applet design.

14

9. FUNCTIONAL LIST

This is the group of basic functions. They are based on the Use Cases in the

Statement of Work – DOR Interoperability and Secure Sharing Demonstration.
The testing will be performed in two stages: first on the existing functionality, and
second on the new functionality developed for the DOR09 use cases.

9.1. Stage 1

The following table indicates existing functionality.

Table 2: Functional Test Groups

Function Group Operand

PDO DO DE DA

1. Connect to
repository

X

2. Create X X X

3. Modify X X

4. Access
(Search)

 X

5. Retrieve X X

6. Delete X X X

9.2. Stage 2

In addition to the new functionality the following will be performed:

• Regression: Perform the Stage 1 tests on a DOR SVN repository.

15

10. TEST METHODOLOGY

10.1. Expected Results

There are two distinct types of test: those expected to succeed and those ex-

pected to fail. The latter are used to test the error conditions.

10.2. Data Set

The file types will include (but are not limited to): avi, mov, mp4, pdf, odt, doc,

txt, and jpg. There will be files of varying size from 1 byte to 50Mb within each file
type. Larger file sizes (up to 4.5 GB) will be tested as part of the functional test
plan. Each file will have the correct mime type.

16

11. TEST ENVIRONMENT

This section describes the network and system configuration, along with the

tools used to test the system.

11.1. Network Configuration

These tests will be run from the Net-Scale location, over the Internet, to the

dnanetscale server in the CNRI network.

InternetNet-Scale
Test Suite

DOR
repository

and
search engine

Figure 6: DOR - Net-Scale Test Environment

11.2. Test Tools and Interfaces

The Net-Scale Test Suite is written in Perl. It interfaces with the DO Repository

as shown in the following diagram.

Net-Scale
Test Suite testprog.javaPerl Scripts

nsdordrv.java

jarnsrep.java DO
Repository

Net-Scale Test Suite
Figure 7: Net-Scale Test Suite Interface to DO Repository

17

12. USE CASES

These use cases identify a test group. For each use case there will be one or

more test cases.

12.1. Functional Use Cases

Table 3: Functional Use Cases

Use
Case
ID

Use Case Descrip-
tion

Notes Expected Results

1. Authenticate A listOperations call is made
which establishes a connec-
tion to the server. It is then
disconnected. Authenticate
is implicitly tested in all other
cases.

User is connected
then disconnected.

2. Deposit a file Deposit a new randomly se-
lected file, 'f1'. This test per-
forms many operations, in-
cluding create DO, with de-
fault DA, and writes to DE
elementid=content. Use files
of different mimetypes and
sizes.

DO is created with
DE with elemen-
tid=content f1, and
default DAs.

3. Add attributes to the
DO created in #2

Set attributes: notes, pub-
lisher, creator, etc. Creates
new attribute if needed.

Attributes are up-
dated and can be
retrieved via
Search

4. Modify the local file Replace the content of the
data element in an existing
DO in the repository.

The elemen-
tid=content DE is
replaced in the ex-
isting DO.

5. Encrypt the depo-
sited file

Creates a new DO with de-
fault DA and writes to en-
crypted DE.

The DE is not
stored in the clear.

6. Get the encrypted
file

Download the un-encrypted
DE to a local file.

The DE stored in
the clear

18

7. Rights (permis-
sions)- Assign

Updates a DO'sDE inter-
nal.rights to allow user's read
operation.

The other user can
access and read
f1.

8. Rights (permissions)
- Remove

Updates a DO'sDE inter-
nal.rights to remove user's
read operation.

The other user can
no longer access
or read f1.

9. Search for specific
attribute value

Specify search query for par-
ticular attribute and value.
For example, filename.

Reference to DO
that matches the
query. The refer-
ence includes the
Object ID and the
attributes.

10. Search for keywords Search for keywords in file
content (mimetypes sup-
ported by Lucene). The in-
dex is created from output
from a mimetype parser.

Reference to DO
that matches the
query. The refer-
ence includes the
Object ID and the
attributes.

11. Download a file Download a file. Use files of
different mimetypes and siz-
es.

File is stored local-
ly and can be read.

12. Remove attributes Remove all attributes from
data element created in test
case #3

Search for DO by
removed attribute
returns no results.

13. Remove file Remove object with data
element and attributes

DO cannot be
found.

19

13. TEST CASES

13.1. Functional Test Cases

Table 4: Functional Test Cases

Use
Case
ID

Use Case
Description

Test Case ID Expected Results

1. Authenticate authenticate Credentials are authenticated and
connection is established and dis-
connected.

2. Deposit a file put DO is created and writes to DE con-
tent f1, and default DAs.

3. Add attributes
to the DO
created in #2

addDOAttribute Sets the value of an attribute (creat-
ing a new attribute if needed).

4. Modify the
local file

mod The DE content is replaced in the ex-
isting DO.

5. Encrypt the
deposited file

putEncrypted Creates new DO with default DA and
writes to encrypted DE.

6. Get the en-
crypted file

getEncrypted Downloads unencrypted DE to a local
file.

7. Rights (per-
missions)-
Assign

allRead Internal.rigths are modfied. The other
user can access and read the DO da-
ta element

8. Rights (per-
missions) -
Remove

revokeRead Internal.rigths are modfied. The other
user can no longer access or read
the DO data element.

9. Search for
specific
attribute value

Specify search
query for particu-
lar attribute and
value. For exam-
ple, filename.

Reference to DO that matches the
query. The reference includes the
Object ID and the attributes.

20

10. Search for
keywords

Search for key-
words in file con-
tent (mimetypes
supported by Lu-
cene).

Reference to DO that matches the
query. The reference includes the
Object ID and the attributes.

11. Download a
file

get File is stored locally and can be read.

12. Remove
attributes

deleteDOAttribute Sets the value of an attribute to null.
Search for DO by removed attribute
returns no results.

13. Remove file delete DO is removed and cannot be found.

21

14. INITIAL TEST EXECUTION

14.1. Demonstration of Test Suite Functionality

The initial tests have been executed for this milestone. The tests were run on

the Net-Scale LAN, with a local installation of the DO repository. The test execu-
tion is for a single user. The test configuration specifies the test duration (hours)
and test interval, or epoch. Data is collected for each interval. For the first test the
duration was 10 hours with 1 hour intervals. For the second test the duration was
12 hours and the interval was 2 hours.

This version of the test suite includes get, put, and delete operations on very
small files. Note that each operation performs a connect (authentication) and dis-
connect. The test suite will be modified to allow multiple operations (get, put, de-
lete, etc) over a single connection, thereby removing the connection overhead.

These test results are preliminary; they are presented here to show operation
of the test suite. No conclusions are to be drawn with regards to the performance
or operation of the DO repository.

1 2 3 4 5 6 7 8 9 10
0.00

1.00

2.00

3.00

4.00

5.00

Test #1
Total Operations: 4174

Get + Connect Delete + Connect Put + Connect

Interval (1 hour)

A
ve

 T
im

e(
s)

 o
ve

r 1
 In

te
rv

al

Figure 9: Test #1

22

1 2 3 4 5 6
0.00

1.00

2.00

3.00

4.00

5.00

Test #2
Total Operations: 5245

Get + Connect Delete + Connect Put + Connect

Interval (2 hours)

A
ve

 T
im

e(
s)

 o
ve

r 1
 In

te
rv

al

Figure 8: Test #2

This test run included test cases for connect (includes authentication) and

modify file (data element content). The times reported for each operation include
the connect and disconnect times. That is, get + connect, delete + connect, put +
connect, modify + connect.

1 2 3 4 5 6
0.00

1.00

2.00

3.00

4.00

Test #3
Total Operations: 3772

Get + Connect Delete + Connect Put + Connect
Connect Modify + Connect

Interval (1 hour)

A
ve

 T
im

e(
s)

 o
ve

r 1
 In

te
rv

al

Figure 9: Test #3

23

The following chart shows the minimum and maximum times per operation, in-
cluding connect times.

Min Max
0.00

2.00

4.00

6.00

8.00

Test #3

Minimum and Maximum Times

Get + Connect Delete + Connect Put + Connect
Connect Modify + Connect

T
im

e
(s

) p
er

 O
pe

ra
tio

n

Figure 10: Minimum and Maximum Times Per Operation.

24

15. TEST SUITE METHODOLOGY

15.1. Overview

The primary objectives of the test suite are to validate the functional integrity

of the DOR operations and collect operation timing. The test scripts were de-
signed with the following concepts.

• Operation list: this list specifies the operations (or test cases) to be per-
formed. In the standard test scenario, entries are chosen randomly from
this list. Given a balanced representation and a sufficiently long test run,
there is approximately an equal distribution of operation executions. This
distribution can be modified by changing the number of times an operation
is represented in the list. For example, this list specifies test cases for au-
thenticate, put, get, and delete:

@opl = ($conf->{name_auth},
$conf->{name_put},
$conf->{name_get},
$conf->{name_del})

To double the files added to the repository simply repeat the entry for that
test case:

@opl = ($conf->{name_auth},
$conf->{name_put},
$conf->{name_put},
$conf->{name_get},
$conf->{name_del})

When an operation is selected the arguments to the operation are vali-
dated. If the validation fails the operation is skipped.

• Data validation: local shadowing. When a file is deposited an object is
created and data elements and attributes are assigned. The same infor-
mation is maintained in the local file system (a shadow copy). Subsequent
changes to the object are made to the local shadow copy. At the conclu-
sion of the test all objects in the repository are compared to their local
shadow to verify data integrity.

• Simultaneous users: A parameter in the configuration file specifies the
number of users. Asynchronous threads are created and executed to
represent simultaneous users. Each thread uses the same configuration
information but a unique private key to simulate independent users.

25

• Replay (repeat test execution): Post processing of the log file is used to
create a replay transcript. This transcript identifies the operations and data
used by the test program. The transcript is then used as input to test-
dor09.pl to carry out the exact sequence of operations with the same
source data as the original test run.

15.2. Configuration

The following parameters are defined in testconfig.pm. This is not the exhaus-

tive list, but those most likely to be modified. Refer to the comments in the mod-
ule for more information.

Table 5: Parameters in Testconfig.pm

Parameter Description

server The handle for the repository and indexer. Ex:
"cnri.test.sean/netscale1:cnri.test.sean/netscale1idx"

copylist The list of external files to be used by those operations
that require source files.

opl The operation list. Comma-separated list of strings cor-
responding to the test cases.

users Number of simultaneous users.

epochs Number of test intervals.

duration Length of each epoch, in seconds.

15.3. Operations

The following operations are tested. They are specified in the operations list.

Each user thread authenticates with the repository once; test case execution
continues under this single authentication until the test ends. The authenticate
test case is an exception.

1. Authenticate and connect to the repository.
2. Write (deposit) a randomly selected file.
3. Set an object attribute.
4. Modify a randomly selected file.

26

5. Write an encrypted file
6. Read an encrypted file
7. Set permissions – allow (rights).
8. Set permissions – revoke.
9. Read (retrieve) a randomly selected file, i.e, the content data element.
10. Delete an attribute.
11. Delete a randomly selected object.

15.4. Test Results

During a test, the execution time of each operation is recorded to a log file.

Post processing produces statistics such as iteration count, average time, stan-
dard deviation, etc. on a per epoch per operation basis as well as collectively for
the test run. Multiple log files may be processed to produce collective statistics
over multiple test runs.

16. TEST SUITE ARCHITECTURE

16.1. Overview

The test suite interfaces with the DO Repository through Java libraries which

contain the DO API. The components are shown in Figure 11.

27

D
O

 API

DO
Repository

Indexer

testdor09.pl

testreg.pl

Test Suite Interface
Libraries

DOR

jarnsdor.jar

testdor.java

testsearch.pl

Figure 11: Test Suite Architecture

These components are included in the source and test script distribution. The

directory structure and files are referenced throughout this document.

16.2. Modules

The test suite is written in Perl and interfaces to the DO API via Java libraries.

The test suite is comprised of the modules shown in Figure 12.

28

testconfig.pm

testfunc.pm

testcomm.pm

testreg.pl

testdor09.pl

testutil.pm
processlog.pl

testsearch.pl

Figure 12: Test Suite Modules

29

These modules are used as follows.
Table 6: Test Suite Modules

Module Description

testutil.pm Low level functions used in other modules.
These functions have no dependencies beyond
standard Perl modules.

testfunc.pm This module contains the test case functions
called from the Perl scripts. It also contains the
functions that interface with the java testprog.

testcomm.pm This module contains the functions which pro-
vide interprocess communication. Each user
thread sends information to the Java test pro-
gram, including the next command to execute,
and receives status and result information.

testconfig.pm This module contains the configuration data for
the test suite. It includes paths, initial variable
values, and the operations to be tested.

testreg.pl This is the main test script for the individual
functional test cases, corner (exception) cases,
and error cases. It is used for regression testing.

testdor09.pl This is the main test script for performance and
data integrity tests.

testsearch.pl This is the search test script. It uses the same
control mechanism as testdor09.pl but only in-
vokes search test cases.

processlog.pl This script post processes the log files from one
or more test runs and creates an html page with
the test results.

16.3. Test Data

The test suite operates with external test files and user data. The test files can

be generated automatically, and/or specific files can be used. This allows for files
of various MIME types and sizes to be used.

30

The files are located in the following directory structure:
src/
certificates/ : the user private key files. The files are
named u<number>_priv_key, where <number> is 01..max
number of users. The password is “user<number>”.
testfiles/ : files used by the test script for deposit.

16.4. Test scripts

These test scripts are described in the table above, and are found in the

source tree:
src/
testscripts/ :
processlog.pl, testdor09.pl, testreg.pl, testsearch.pl
testcomm.pm, testfunc.pm, testutil.pm, testconfig.pm

16.5. Java Interface Modules

The test cases in testfunc.pm invoke DO API operations via the testcomm.pm,

testdor.java and jarnsdor.java modules. The testcomm.pm module executes
testdor.java in a separate process and provides a mechanism for communicating
with the active process. The testdor.java module caches an instance of the
access library jarnsdor.java for reuse and streamlines the DO API for testing pur-
poses (meaning, testdor.java takes care of file streams and buffered reading,
etc...). The library jarnsdor.java directly makes DO API calls while maintaining
repository connection state.

These Java modules are located in the source tree:
src/
jarnsdor/

31

16.6. Logging and Log Files

16.6.1. Logging
The test suite uses the Perl module log4perl, a Perl port of log4j. This module

allows messages to be assigned to logging levels DEBUG, INFO, WARNING,
ERROR, and FATAL. The log messages may be written to stdout or a file. File-
names are created based upon the script_name_date_timestamp. Log files are
stored in the directory src/test-results/timestamp/. This allows many tests to be
run without overwriting existing logs.

16.6.2. Log Files
These guidelines will help interpret the log file contents. They are organized by

log level.
• DEBUG: These messages are for information and debugging purposes, in

the event of an error. All functions report error and status. Some log input
as well. All calls to the java test program are logged as well. Here are a
couple of examples.

o 2009/01/26 08:56:11 *DEBUG* testfunc::write_to:355> user1: Ex-
ecuting: write_rnd_file

The function write_to() in module testfunc.pm is called from the
main test script testdor09.pl.

o 2009/01/26 08:56:21 *DEBUG* testfunc::writefile_dor:819> cmd:
put cnri.test.alan/ns_repo2:cnri.test.alan/ns_repo2
cnri.test.user01/user01 /alan/svnws/prj/darpa/dor09-
1.0/src/testdata/certificates/u01_priv_key user01
/alan/svnws/prj/darpa/dor09-1.0/src/testtemp/testfiles/1.dat

The function writefile_dor called the java testprog (indicated by
cmd:) for the put operation with the shown credentials and file to
deposit.

• INFO: These informational messages describe the current operation.
o 2009/01/26 08:56:11 *INFO* testfunc::write_to:346> Done execut-

ing test data file creation script: /alan/svnws/prj/darpa/dor09-
1.0/src/testscripts/createTestdata.pl

o 2009/01/26 08:56:11 *INFO* testfunc::write_to:346> user1: Initializ-
ing for </alan/svnws/prj/darpa/dor09-
1.0/src/testdata/certificates/u01_priv_key>

32

• WARN: These informational messages do not indicate an error, but rather
a condition is not as expected.

o 2009/01/26 08:56:11 *WARN* testfunc::write_to:337> user3: Not
mirroring

Local mirroring is the default configuration. This message indicates
no local mirroring and verification will be performed for user3.

• ERROR: An operation or test script failed. At this point the script will ter-
minate.

o 2009/01/26 09:04:04 *ERROR* testfunc::check_stdout:3370> Error:
class testdor$NSTestException

2009/01/26 09:04:04 *ERROR* testfunc::list_objects:1231> a test
command reported an error!

2009/01/26 09:04:04 *ERROR* testfunc::write_rnd_file:2437> Can-
not list objects - return value:1

33

17. HOW TO RUN THE TEST SUITE

17.1. Edit the Configuration

Determine the test cases to be executed, the number of simultaneous users,

the number of epochs, and their duration.
Edit the Perl module testconfig.pm and set these parameters.

Table 7: Frequently Edited Parameters in Testconfig.pm

Parameter Description Default Value

$conf->{server} The repository to test. Set to re-
pository_handle:indexer_handle

No default.

@copylist List of files to deposit in the repo-
sitory.

@opl List of test cases to execute.

$conf->{users} Number of simultaneous users. 10

$conf->{epochs} Number of test cycles. 12

$conf->{duration} Duration of a test cycle, in
seconds.

3600

17.2. Initialize the Environment

Verify the following before running the test script.
• Repository is running and accepts connections from the workstation run-

ning the tests (the test workstation).
• The test workstation has sufficient free disk space for the log files and lo-

cal shadow directories. This will be determined by the length of the test
and the number of users.

17.3. Run the Scripts

To run the script,

cd src/jarnsdor
make testdor

34

17.4. Interpret the Results

The log file post processor, processlog.pl, is used to collect the results from

one or more test runs. If the script detects multiple log files it creates a total of all
the operations.

The parameter $conf->{auto_process} in testconfig.pm is used to run the post
processor automatically at the end of a test run. To run the script manually, copy
the file processlog.pl into the same directory with one or more log files and run
the script. The output file name has the same name as the log file with a *.html
extension.

35

18. ADVANCED TOPICS

18.1. Replay

Log file replay is currently under development.

18.2. Customizing a Test Execution

This section describes the steps to configure the test suite for a specialized

test. Suppose a test is to be executed that just performs deposits of large files.
Perform the following steps.

18.2.1. Adding Test Files
Add the new files to the testdata subdirectory: ./src/testdata/testfiles

18.2.2. Configuring testconfig.pm
Two changes must be made:
1. Modify the copylist to exclude existing files and add the new files. Make a

copy of the existing definition, then comment-out (prefix with #) the exist-
ing definition. Edit the new copylist to specify:
my @copylist = (
"new-large-file1",
"new-large-file2"
);

2. Modify the opl to only include:
@opl = ($conf->{name_put})

36

18.3. How to Add a Test Case

This section describes the steps to add a new test case to the test suite.
There may be a one-to-one association between a test case and an operation

to test. The following sections describe the test case for depositing an object.
These files are all involved in a test case:

• testconfig.pm: Configuration information, including the test case ID and
any required data for this case.

• testdor09.pl: Main control loop for the test case.
• testfunc.pm: This file contains the actual test case definition and execu-

tion. Most of the logging occurs here.
• testdor.java: This is the java implementation of the test case. It uses the

Digital Object API to interact with the DOR. The execution is timed.

18.3.1. Configuration: testconfig.pm
At a minimum, one test case must be listed in the operation list. Update the

comment section and add the case to the opl.
set the operation distribution
the operations are as follow:
$conf->{name_auth} = "Authenticate";
$conf->{name_put} = "Put";
$conf->{name_addDOA} = "Add DO Attribute";
$conf->{name_mod} = "Modify DE";
$conf->{name_putEnc} = "Put Encrypted";
$conf->{name_getEnc} = "Get Encrypted";
$conf->{name_allowRead} = "Allow Read";
$conf->{name_revokeRead} = "Revoke Read";
$conf->{name_search} = "Search";
$conf->{name_get} = "Get";
$conf->{name_delDOA} = "Delete DO Attribute";
$conf->{name_del} = "Delete DO";
$conf->{name_new} = "New Test Case";

18.3.2. Main Test Loop: testdor09.pl
Locate the switch statement in the Perl script and add case $name_new. The

following should be added to the case:
• log file reporting, includes status and error messages.
• call the function which implements the test case.
• update counters.

37

18.3.3. Test Case Function: testfunc.pm
The Perl implementation of the test case is in this module. A template function

has been included named example_test_case_rnd(). Copy this example for the
new case.

The following must be performed:

• add the function name to the EXPORT list.
• create the function which builds the test case enviroment.
• create the function which executes the case (calls the java equivalent).

18.3.4. Java Test Case Function: testdor.java
This Java program is the interface to the DO API. The test case (API call)

must be implemented here. Refer to the example_test_case and cmdExample()
in the file.

The following must be performed:

• add the function for the test case.
• call the test case function from main().
• add the function to the command line Exception which prints Usage infor-

mation.

18.3.5. Compile the Test Suite
Only the Java code must be compiled. This is done from the ./src directory by

entering:
make clobber
make

38

19. SAMPLE TEST RESULTS

This is a sample page created from one log file.
Test Summary

Users Iterations Avg
Time

2 161 2.913

Test Details

 Iterations Avg
Time Std Dev Min Max

read_rnd_file 94 2.314 0.308 1.796 3.478

write_rnd_fil
e 67 3.753 0.737 3.052 7.023

39

Per Epoch Details

 Iterations Avg Time Std Dev Min Max

read_rnd_file epoch 1 11 2.174 0.354 1.796 2.982

 epoch 2 11 2.23 0.267 1.866 2.696

 epoch 3 8 2.32 0.23 1.899 2.622

 epoch 4 11 2.387 0.314 1.983 2.9

 epoch 5 16 2.296 0.2 2.005 2.686

 epoch 6 10 2.231 0.189 2.032 2.635

 epoch 7 10 2.464 0.33 2.149 3.273

 epoch 8 10 2.326 0.355 2.018 3.233

 epoch 9 4 2.23 0.292 1.971 2.644

 epoch 10 3 2.782 0.651 2.188 3.478

write_rnd_file epoch 1 8 3.499 0.758 3.052 5.336

 epoch 2 7 3.93 0.829 3.22 5.106

 epoch 3 8 3.303 0.14 3.112 3.56

 epoch 4 6 3.531 0.297 3.18 3.943

 epoch 5 5 4.324 1.414 3.272 6.746

 epoch 6 6 4.419 1.354 3.392 7.023

 epoch 7 7 3.756 0.326 3.254 4.151

 epoch 8 7 3.719 0.355 3.391 4.355

 epoch 9 9 3.627 0.197 3.322 3.946

 epoch 10 4 3.809 0.63 3.437 4.75

Log files processed:
testdor09-testdor_20090126-133003.log

T

40

his page was created from two log files.
Test Summary

Users Iterations Avg Time

2 308 3.166

Test Details

 Iterations Avg Time Std Dev Min Max

read_rnd_file 175 2.606 1.659 1.796 17.81

write_rnd_file 133 3.903 1.721 2.98 21.252

Log files processed:

testdor09-testdor_20090126-135021.log
testdor09-testdor_20090126-133003.log

41

20. PERFORMANCE TEST PLAN

The goal at this stage was to implement a test harness and test environment

and to demonstrate that it could be used to measure the performance of the re-
pository system. This was accomplished and, in addition, preliminary test runs
were used to identify and address some areas for performance improvement.
Comprehensive system tuning and assessments of performance were not in the
scope of this project.

21. METHODOLOGY

The goal for the test program was to simulate repository performance under

continuous use by a different numbers of users, with a focus on upload, down-
load and search operations.

The test program will upload/download/search files of different sizes for a spe-
cified duration. Virtual users will simulate concurrent operations. There are four
test groups:

1. Baseline – A single file will be uploaded by 1 user, 5 users, and 50 simul-

taneous virtual users; each virtual user will continuously upload the file for
the test duration of 60 minutes. This scenario will be repeated for down-
load and search. Search will be performed by filename and keyword.
There will be separate test runs with specific file sizes.

2. Random data – These tests use a collection of various file types of sizes
ranging from 1 byte to 100MB. The test will be executed as above: upload
for 1, 5, and 50 virtual users, then download, and search.

3. Random data/random operations – using the random data set above, upl-
oad/download/search will be randomly selected. This test uses 1, 5, and
50 virtual users and runs for 60 minutes.

4. Duration – Group #3 will be run with 5 virtual users for 1, 5, and 10 days.
Note that there are many operations which are not included in these perfor-

mance tests – they are included in the functional/feature test cases.

21.1. Data Set

The file types will include (but are not limited to): pdf, odt, doc, txt, and jpg.

There will be files of varying size from 1K bytes to 11MB within each file type.
Larger file sizes (up to 4.5 GB) will be tested as part of the functional test plan.
Each file will have the correct mime type.

42

21.2. Test Results

If a test does not run to completion the test results are considered inconclu-

sive. Upon successful conclusion the test reports the average time per operation,
per user. The files uploaded and downloaded will be logged. The following will
also be monitored: CPU usage, memory usage, disk space usage.

22. TEST ENVIRONMENT

This section describes the network and system configuration, along with the

tools used to test the system.

22.1. Network Configuration

The tests will be run in a LAN and WAN configuration.

22.2. Test Tools

The tests are written in Perl and Java. Standard Linux programs are used to

monitor performance (top), network utilization (ntop), and disk i/o (iotop).
These tools consumed significant CPU resources so the client and server

workstations were monitored periodically.

43

23. TEST CASES

All of the following cases will be executed on the final release of DOR09, al-

though they will be run throughout the project.
Table 8: Test Case Matrix

Test Case Id Opera-
tion

Users Data Duration (min) Test
Executed
(Y/N) Group Case

1
Base-
line

A Upload 1 11MB file 60 Y

B Upload 5 11MB file 60 Y

C Upload 50 11MB file 60 Y

D Download 1 11MB file 60 Y

E Download 5 11MB file 60 Y

F Download 50 11MB file 60 Y

G Search 1 11MB file 60 Y

H Search 5 11MB file 60 Y

I Search 50 11MB file 60 Y

44

3
Random
Data /
Random
Operations

A Random 1 Random 60 Y

B Random 5 Random 60 Y

C Random 50 Random 60 Y

4
Duration

A Random 5 Random 14400 (1 day) Y

B Random 5 Random 72000 (5 days) Y

C Random 5 Random 144000 (10
days)

N

2
Random
Data

A Upload 1 Random 60 Y

B Upload 5 Random 60 Y

C Upload 50 Random 60 Y

D Download 1 Random 60 Y

E Download 5 Random 60 Y

F Download 50 Random 60 Y

G Search 1 Random 60 Y

H Search 5 Random 60 Y

I Search 50 Random 60 Y

45

24. TEST CASE RESULTS

24.1. Hardware Configuration

These workstations were used for the tests.

Table 9: Client Workstation Configuration

Client Laptop #1 Dell Precision M65

Operating System Ubuntu 2.6.24-23 Hardy Heron Workstation Gnome
desktop i686

Processor Intel(R) Core(TM)2 CPU T7400 @ 2.16GHz

Memory 2074212 KB

Disk 60Gb

Client Laptop #2 Dell Precision M65

Operating System Ubuntu 2.6.28-11 Jaunty Jackalope Workstation
Gnome desktop i686

Processor Intel(R) Core(TM)2 CPU T2400 @ 1.83GHz

Memory 1025152 KB

Disk 60Gb

46

Table 10: Server Configuration

Repository “no name” Server

Operating System Ubuntu 2.6.24-23 Hardy Heron Server 8.04 x86_64,
updated to Ubuntu 2.6.28-11 Jaunty Jackalope Serv-
er 9.04 x86_64

Processor Intel(R) Pentium(R) Dual CPU E2180 @ 2.00GHz

Memory 1025136 KB

Disk1 80Gb

Disk2 1T

24.2. Observations and Notes

All of the test cases were executed using the DOP and repository version do-

1.17-7.

24.2.1. Test Execution Methodology
An attempt was made to maintain consistency in the test environment, howev-

er this was not always possible. For example, some of the upload tests were ex-
ecuted on an empty repository, but download and search required a populated
repository. The configurations and environment were frequently monitored.

• The clients and server are connected to the same network switch. There
was no other LAN traffic affecting the test systems.

• The tests were only executed in a LAN configuration. Internet access was
required for repository handle resolution only.

• A repository was created on the server for the users PDOs. WAN traffic
was limited to handle resolution, which occurred only during the test script
initialization.

• The server disk space, CPU and memory utilization were monitored.
• The size of the repository logs were checked, as well as errors in the error

log.
• The status of the indexer was determined by verifying the timestamp value

in status.dct against the day's transaction log. If the timestamp was not the
last entry in the log (and stayed that way), the indexer was not operational.

47

• The repository was restarted when an error occurred, or if performance
degraded significantly. The server was rebooted infrequently.

• The test script output is a log file containing all test activity and results.
This log is post-processed for the test statistics.

• The throughput was calculated for the upload and download operations.
This measurement was performed at the application level and excludes
protocol overhead and retransmitted data packets. This is referred to as
goodput (see http://en.wikipedia.org/wiki/Goodput). This was computed
and reported for each test user.

http://en.wikipedia.org/wiki/Goodput

48

24.2.2. Observations
The following were observed during test execution.
• The tests were not run over SSL (the SSL port was not included in the re-

pository handle). Standard DOP encryption was used.
• The repository thread resource pool is increased during test execution and

drops when the test is completed. The thread pool increases significantly
for the 50 user tests, and does not return to previous levels. For example,
when the repository is initialized, the count is approximately 31; during a
test it increases to approximately 70, then drops to the 50s when the test
completes. At times the counts were observed to be as high as 216.

• Server CPU utilization was between 15 and 55%, depending on the test
and number of users. Most of the observations were in the low 20%.

• A few times an error occurred which generated copious amount of error
output that caused an out-of-space disk condition. Freeing up space gen-
erated more error output. The repstat.dct and status.dct files had 0 bytes.
This prevented the repository from starting and it had to be re-initialized.

• The indexer continuously processes the transaction log. When the reposi-
tory is modified (upload and delete operations) the indexer would get be-
hind, but never completely stop with this software release. The impact of
the indexer on the test results is unknown. It would be good to run the upl-
oad and download tests with the indexer disabled.

• For some of the tests, the standard deviations for the search times are
greater than the actual times (2-3 fold).

• Search results are out of date while the indexer catches up. This was ob-
served during the 1 and 5 day duration tests.

• The size of the index is an unknown variable in the search tests.
• The Lucene version integrated in the repository is out-of-date.
• There can be a large variability in test execution times (as indicated by the

standard deviation) and between test executions.
• The time for handle resolution is not included in the test results. In this im-

plementation, handle resolution only occurs during authentication and not
for each object request. The recorded times are for the operation being
tested.

• A number of test runs were attempted before the ones reported in this
document. A number of issues were identified - some have been resolved
and others are under investigation.

49

24.3. Test Results

These tests were run in a LAN configuration using do-1.17-7 distribution. Each

test ran for 60 minutes. DOP over SSL was not used for these tests.
The first column in the test case tables labeled Group / Case refers to the test

case identified in Table 13. The suffix refers to the execution of that test case.
For example, 1A-1 refers to the first test run of case 1A, which is 1 user PUT of
an 11MB file.

The Average Time charts show the standard deviation.

24.3.1. SCP Reference Tests
The SCP tests reported below are included to provide a point of reference for

the repository tests that follow.
The same 11MB file was copied between the client and server using scp.

There was no other foreground or background activity on the systems. The first
table shows the results of copies from the client to the server (upload); the
second from the server to client (download).

For the 1 user test 500 files were copied. For the 5 user test, each user copied
100 files for a total of 500.

The 50 user scp copy test was not executed due to ssh daemon configuration
limitations.

50

Table 11: SCP Copy from Client to Server (Upload)

Users File size Number
of Files

Average
Time
(s)

Std
Dev

Throughput
per User
(KB/s)

Total
Throughput
(KB/s)

1 11MB 500 1.21 0.19 8701.13 8701.13

5 11MB 500 4.40 1.67 2391.54 11957.70

Table 12: SCP Copy from Server to Client (Download)

Users File size Number
of Files

Average
Time
(s)

Std
Dev

Throughput
per User
(KB/s)

Total
Throughput
(KB/s)

1 11MB 500 1.11 0.04 9485.01 9485.01

5 11MB 500 4.41 2.43 2386.85 11934.25

51

1 U Upload 5 U Up 1 U Download 5 U Down
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Throughput per User

Th
ro

ug
hp

ut
 (K

B/
s)

Figure 13: SCP Reference Test 11 MB File Copy

52

24.3.2. Upload – 1, 5 and 50 Users
An 11MB PDF file and random size data files were uploaded. Multiple test runs
were performed; each test ran for 60 minutes. For the 1 and 5 user tests the re-
pository started empty and ended with more than 36K objects. The repository
was re-initialized before starting the 50 user tests. The indexer completed (i.e.
caught up with the transaction queue) between 1 and 2 hours after the test com-
pleted.

The test case tables are interpreted as follows. For the test case 1B-1:
• There were 5 total users.
• A total of 6988 files were uploaded, or 1398 files per user on average.
• The average upload time is 1.73 seconds per user per file.
• The goodput is a measure of the throughput excluding protocol overhead

and retransmissions. This was captured for each user and is shown per
user.

53

Table 13: Upload – 1, 5 and 50 Users

Group/
Case

Users Total
Number
of Files

Average
Time (s)
per Us-
er

Std
Dev

Goodput
(KB/s)
per User

Notes

SCP 1 500 1.21 0.19 8701.13 For reference.

SCP 5 500 4.40 1.67 11957.70

1A-1 1 2294 1.02 0.53 2062.97 11MB file.

1A-2 1 2487 0.93 0.43 2238.68 11MB file.

1A-1 1 2123 1.09 0.98 1930.86 Random file sizes.

1A-2 1 2264 1.05 0.78 1993.59 Random file sizes.

1B-1 5 6988 1.73 1.04 1213.91 11MB file.

1B-2 5 7264 1.67 0.98 1255.82 11MB file.

2B-1 5 7723 1.58 0.77 1331.82 Random file sizes.

2B-2 5 6633 1.82 1.17 1128.68 Random file sizes.

1C-1 50 10000 12.31 5.76 151.46 11MB file.

1C-2 50 8773 13.98 7.11 138.76 11MB file.

2C-1 50 8894 13.85 9.04 138.67 Random file sizes.

2C-2 50 8176 15.12 9.21 129.81 Random file sizes.

54

Figure 14: Average Time per User using 11 MB and Random Data Files

In this graph the green bars are the scp reference test results. Otherwise the

bars of the same color bars are different runs of the same test. The 11-1 refers to
the 11MB file, single user PUT test; 1-R refers to the random data file, single us-
er test.

55

1 U 11Mb
1 U Random

5 U 11Mb
5 U Random

50 U 11 MB
 50 U Random

0

500

1000

1500

2000

2500

PUT - 1, 5, and 50 Users
Goodput per User

G
oo

dp
ut

 (
KB

/s
)

Figure 15: Goodput per User using 11 MB and Random Data Files

24.3.3. Download – 1 and 5 Users
An 11MB PDF file and random size data files were downloaded from the repo-

sitory which contained approximately 36K objects. Each test ran for 60 minutes.

56

Table 14: Download – 1 and 5 Users

Group/
Case

Users Total
Number
of Files

Average
Time (s)
per User

Std
Dev

Goodput
(KB/s)
per User

Notes

SCP 1 500 1.11 0.04 9485.01 For refer-
ence.

SCP 5 500 4.41 2.43 11934.25

1D-1 1 2575 1.39 0.19 7574.36 11MB file.

1D-2 1 6019 0.58 0.37 3498.47 11MB file.

2D-1 1 2614 1.37 0.16 7690.55 Random
file sizes.

2D-2 1 6011 0.58 0.37 3571.44 Random
file sizes.

1E-1 5 3959 4.54 1.18 11592.56 11MB file.

1E-2 5 14865 1.18 0.86 8866.26 11MB file.

2E-1 5 3917 4.57 1.06 11518.99 Random
file sizes.

2E-2 5 14808 1.19 0.85 8802.69 Random
file sizes.

1F-1 50 4048 39.99 8.76 151.46 11MB file.

1F-2 50 4035 44.73 7.07 138.76 11MB file.

2F-1 50 18834 9.42 9.43 138.67 Random
file sizes.

2F-2 50 16603 10.84 7.85 129.81 Random
file sizes.

57

Figure 16: Average Time per User using 11 MB and Random Data Files

58

In this graph the green bars are the scp reference test results. Otherwise the
bars of the same color bars are different runs of the same test.

1 U 11Mb 1 U Random 5 U 11Mb 5 U Random 50 U 11 MB 50 U Random
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Goodput per User

G
oo

dp
ut

 (
KB

/s
)

GET - 1, 5, and 50 Users

Figure 17: Goodput per User using 11 MB and Random Data Files

24.3.4. Search – 1 and 5 Users
The search operation was performed for a term added to the object attribute

during upload. Each test ran for 60 minutes. In general the file size should not be
a factor in the search timing; the 2G tests were performed with the random files.
For test 2G, the repository contained 8342 objects. Note that the 0 search results
were due to a unique query on a data attribute which did not match (the query
term was typed incorrectly).

59

Table 15: Search – 1 and 5 Users

Group/
Case

Users Total Num-
ber
of Searches
Performed

Number
of
Search
Results

Average
Time (s)
per User

Std
Dev

Notes

1G-1 1 1803 2487 1.63 0.82 11 MB File

2G-1 1 1974 2264 1.52 0.43 Random
files

1H1 5 1548 1440 10.97 2.14 11 MB File

2H-1 5 1564 1400 10.82 3.91 Random
files

1I-1 50 2161 range 84.52 20.25 11MB file.
Range a
search re-
sults:
9,10,916,
917, 919,
972, 973,
1389.

2I-1 50 3063 range 58.54 24.11 Results 76-
86, 0 re-
sults for
users68,
69, and us-
er63. Us-
er63 com-
pleted after
1690 s.

60

Figure 18: Average Time per User Using 11 MB and Random Files

24.4. Test Results – Random Data / Random Operations

24.4.1. 1, 5 and 50 Users
Random files sizes and types were used. The test started with 1438 objects and
ended with 39213 objects in the repository. Note that there are no goodput re-
sults for the delete and search operations as no (measurable) data is transmitted.

61

Table 16: Random Operations - 1, 5 and 50 Users

Grou
p/
Case

Us-
ers

Operation Number of
Iterations

Average
Time (s)
per User

Std
Dev

Goodput
(KB/s) per
User

3A 1 Delete 936 0.18 0.27 N/A

 Get 915 0.55 0.37 3466.26

 Put 986 1.23 1.10 1584.35

 Search 982 1.09 3.93 N/A

3B 5 Delete 3038 0.31 0.39 N/A

 Get 2918 0.84 0.91 2415.98

 Put 3091 2.02 1.71 1018.79

 Search 3031 1.65 5.06 N/A

3C 50 Delete 5476 0.81 1.27 N/A

 Get 5521 2.10 2.57 971.57

 Put 5973 5.73 5.38 386.77

 Search 5392 2.63 5.73 N/A

62

Delete DO Get Put Search
0

1

2

3

4

5

6

7

Random Operations for 1, 5, and 50 Users
Ave Time per User

1 User
5 Users
50 Users

A
ve

 T
im

e
(s

)

Get Put
0

500

1000

1500

2000

2500

3000

3500

4000

Goodput per User

1 User
5 Users
50 Users

G
oo

dp
ut

 (
KB

/s
)

Figure 19: Random Operations using Random Data

24.5. Test Results – Duration Tests

Random files sizes and types were used.

63

24.5.1. 1 Day Test

Table 17: 1 Day Test - 1, 5 and 50 Users

Operation Number of
Iterations

Average Time
(s)

Std Dev Goodput (KB/s) per
User

Delete 35776 0.37 0.57 N/A

Get 35681 0.84 0.90 11945.04

Put 36644 2.13 1.95 4845.9

Search 35362 7.23 18.85 N/A

Figure 20: 1 Day Test – Average Time per User for Random Operations

64

Get Put
0

500

1000

1500

2000

2500

3000

1 Day - Random Operations
Goodput per User

G
o

od
pu

t
(K

B
/s

)

Figure 21: 1 Day Test – Goodput per User for GET and PUT

The following chart shows the average time for each operation per hour. All

times are consistent except for Search. Note that the Search data point at Epoch
18 was off the chart at 106.41s. There was insufficient historical data to offer an
explanation for this anomaly.

65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

5

10

15

20

25

30

1 Day 5 User
By Epoch

Delete DO
Get
Put
Search

Epoch

A
ve

 T
im

e
(s

)

Figure 22: 1 Day Test – Operation per Hour

24.5.2. 5 Day Test

Table 18: 5 Day Test

Operation Number
of Itera-
tions

Average
Time (s)

Std Dev Goodput (KB/s) per
User

Delete 236327 0.39 0.71 N/A

Get 235240 0.77 0.72 2610.61

Put 237544 2.08 1.80 969.51

Search 233403 4.62 12.62 N/A

24.5.3. 10 Day Test
This test was not executed due to time limitations.

66

25. CONCLUSIONS

The DO Repository version 1.17-7 was evaluated in terms of performance for

several common operations such as put, get, search and delete. These opera-
tions were tested based on a previously agreed test plan, and included several
conditions as explained before, including testing periods which extended over
several days. Even though it's difficult to characterize these operations in terms
of real usage patterns, this evaluation proved to be a valuable tool to assess and
therefore correct several issues that have not been identified during the devel-
opment phase.

At this point, comparing the timing observed for the operations between one
and five users, the behavior of the DO repository is comparable with accessing a
network drive, as shown by the reference to scp. When running 50 users, we ob-
served increased duration time to execute an operation per user. Further investi-
gation is required to determine if the observed 50 user performance is compara-
ble to scp performance, and if the repository can be optimized to increase per-
formance for large numbers of simultaneous users.

With the several day tests, the most significant finding was related to the
search operation, where significant degradation in performance was observed for
five users after 7 hours. This is under investigation.

Besides the observations mentioned at the beginning of this document, one
open question remains from this evaluation, and it is the variability in the mea-
surements as shown by i) the standard deviations over the same tests ii) differ-
ences over test runs, and iii) differences when the same operation is repeated or
under random operations. This will be investigated.

In conclusion, as measured in this set of tests the DO repository version 1.17-
7 behaves adequately for the operations of put, get and delete for five simultane-
ous users over extended periods of times using different patterns of operations
and file sizes. Search operations also behave properly for five simultaneous us-
ers, but it was shown that over extended periods of time, it presents an inexplic-
able behavior.

67

26. TEST DATA

26.1. Test Files

These files were used for the upload tests.

Table 19: Test Files

File name Size (bytes) Notes

1b.txt 1 When used in get and put
tests these small files had
poor throughput; this was
deemed unrealistic so
they were removed from
the random test execu-
tions.

10b.txt 10

100b.txt 100

This is a very_long_(FILE-NAME)
with +^misc~characters...txt

1023

1k.gif 1024

a-p_p!\@e.jpg 1811

f[r]{u}1t.jpeg 1811

The Thinker.jpg 4653

10k.txt 10240

b#u%g\$.jpg 15347

InS3c=ts.jpg 15347

100k.txt 102400

huckfinn.txt 622888

10M.tar 10781042

ngn_jan2009.pdf 11008000

68

27. LESSONS LEARNED

27.1. Internal Use of the Repository System for Collaboration

Over the course of this project, the team used a Wiki to share documents,

track tickets and communicate. However, in retrospect we realize that we missed
an opportunity to utilize the developing repository in a real-world setting.

27.2. Allow Existing User Paradigms to Co-exist with New Functionality

Once information is deposited in a repository the only way to retrieve it, if the

client does not know the handle associated with it, is through search. This is a
paradigm shift from traditional file systems. Its main advantages are: i) data
access is based on free-form queries rather than file names and browsing direc-
tories, and ii) multiple repositories and workspaces are concurrently accessible.

This has the potential to improve user access to data; however, there are is-
sues to consider:

• It is essential that the indexer be able to extract all allowable and pertinent
information from digital objects. Digital objects which cannot be indexed
are not accessible via search, and therefore become invisible to users
who do not know the object's handle for direct access.

The performance of the indexer has an impact on how quickly the data can be
retrieved. The indexing process is not instantaneous. This can be disconcerting
to users accustomed to traditional storage systems; however, dynamically updat-
ing user interfaces may mitigate this effect.

While addressing these issues is important, we also believe that systems that
introduce new paradigms should provide a mechanism for gracefully transitioning
from the old paradigm to the new. In the case of the DOR, that could include a
view that mimics a files and folders view.

27.3. Ensure that the Core Repository Functionality Can Support Differ-
ent Use Models

In addition to the technical effort required to build the DOR-SVN and SVN-

DOR interfaces, there was a lot of thought and consideration required regarding
usability, including how to make the process work smoothly and sensibly for the
two user groups.

69

For example, we expect DO client tool users to locate individual objects
through a search interface. Meanwhile, the typical workflow for an SVN user is to
check out an entire repository as a working copy, to locate particular files within
the repository by their path, and to periodically synchronize between the local
working copy and the remote repository. It took thought and multiple iterations to
get the SVN client tools to work with the DO Repository in a way that felt com-
fortable and useful to users familiar with ordinary SVN repositories.

We foresee that as other clients and existing data management systems are
considered for interoperability with repositories that similar conceptual issues will
arise. People will want to use repositories in different ways. The goals are to en-
sure that the core repository functionality supports different use models, then to
provide people with tools that utilize that flexibility.

70

28. FUTURE WORK

28.1. Reduce Administrative Complexity

We found that it would be beneficial to streamline both the server installation

process and the administration procedures.
We found that repository installation can be a time-consuming process for ad-

ministrators who are new to the system and that enhanced administration tools
are desirable. Errors included those introduced in handle setup and/or repository
setup. This process could be made more robust.

• In addition, each repository provides a high level of granularity for setting
permissions and access rules. This provides great flexibility; however, it
could also represent a potential vulnerability of the system due to its com-
plexity.

• Currently, for a user to gain access to a shared workspace, the user's
handle must be added to the internal.rights and internal.forwarding files for
that workspace by an administrator. To allow groups to be used, the group
must be created (by the user), the private key added to each group mem-
ber's PDO, and the group handle added to the forwarding rules (by the
administrator).

• Every repository will need an administration procedure that sets up, main-
tains and updates operational rules. For example, assignments of clients
to repositories and the operations that these clients can do in the respec-
tive repositories are not automatic. In addition, the current repository im-
plementation has a repository-level set of default rights that are applied to
objects that don't contain their own internal.rights element, but it is a static
set of rights that do not take into account potential differences in policies
for different repositories. The core repository functionality should have the
flexibility to support different administrative policies and should provide
simple mechanisms for administrators to specify those policies.

• Finally, tools to support administrative activities, as well as tools to man-
age users (add, remove, backup data, assign and monitor quotas, pass-
phrase management, etc.) and to monitor system performance (disk
space, network, CPU, memory, etc.) would be beneficial.

71

28.2. Further Mechanisms to Support Sharing of Digital Objects

Digital object repositories serve as gatekeepers of the operations that can be

performed. However, at the same time, every DO also has the element inter-
nal.rights that defines the rules of operations for that object. In internal.rights,
every operation on an object can be permitted or rejected based on the individual
user's identity or based on a group to which they belong. Operations include set-
ting or getting attributes, putting or retrieving data elements, and many more. The
level of granularity is quite large, which provides great flexibility.

In a practical setting, the administrative mechanisms to set up, maintain, up-
date and enforce the rules that support this flexibility could become cumbersome
and time consuming.

In practice, user interfaces to the DO system have provided a simplified view
of the rules, consolidating the operation rights into 'read' and 'write' permissions
and hiding the level of detail that is allowed by the system. If the system sup-
ported a standard model of simplified access rights then developing DO clients
could be made easier.

Mechanisms to support identity discovery (to locate the handle for another us-
er) are also required. The primary issue is that discovering the handle for another
user is best done using an out-of-band method such as the other user supplying
their handle via an in-person meeting. Alternate methods such as signed com-
munication from trusted third parties that certify the user's name, handle, and
other information (title, birthday, etc.) would be useful here.

28.3. Additional Mechanisms for Group Management

The repository architecture provides a facility for establishing membership in a

group, not for group management. Group management is external to the archi-
tecture; it is specific to individual organizations and how they choose to manage
their groups. Group management applications may also be organization-specific.

Groups are currently defined as components which consist of i) a handle with
its respective public key and ii) one certificate distributed to each member of the
group containing that member's handle and that is signed by the private key
which corresponds to the group handle's public key.

This definition is built on existing components of the repository architecture,
and with this simple definition groups can grow their number of members indefi-
nitely.

72

However, there are a few drawbacks to the current implementation:
• With this architecture, the members of a group cannot be easily listed. The

ability to determine group membership is dependent on the group man-
agement application.

• Whatever system is developed to manage group members will need to be
adapted to regularly generate and distribute certificates.

• Revoking group membership is currently less than instantaneous. If a
group member has a connection open with a repository and has already
been authenticated as being a member of the group, that authentication
will be cached with the connection and will not be re-verified until the con-
nection is re-established and the TTL on the cached group handle (con-
taining the group public key, and soon the revocation list) expires, causing
the server to re-verify the group credentials.

Example mechanisms for administering groups may need to be defined and
implemented and the revocation list mechanism still needs to be implemented.

28.4. Study Efficiency of Indexing and Search

In the current system implementation, the indexing mechanism is decoupled

from the repository application. This provides the advantage of being able to in-
corporate the best state-of-the art solution available at the time. In the current
implementation, the Lucene search engine has been chosen for indexing and
search.

Extensive evaluation of the Lucene search engine's configuration and settings
within the system has not yet been carried out. In addition, in the current packag-
ing of the repository distribution, the search engine configuration is not exposed
to the administrator. For future distributions of the repository it may be desirable
to expose these settings to the administrator for configuration and tuning.

Size management of the index is needed to control performance of the
searches and of the indexing process. The larger the repository (i.e., the more
DOs stored) the larger the indexer may get.

Efficient search mechanisms within the index are required to ensure consistent
performance as the repository size and/or number of clients grows.

In the current implementation, every repository has its own index and indexer
process. For federated searches, the repository forwards the search to the other
repositories with which it communicates, and then the indexer process consoli-
dates the results for the client. Here as well, efficient implementations are crucial
for performance and scalability.

73

28.5. Further Study of Encryption Techniques

Encryption can be used to protect the data portions of DOs in case the object,

repository, or physical storage is ever compromised. Access to the DOs, whether
encrypted or not, during operation is controlled by the permissions specified in
the element internal.rights.

Encryption is involved in two levels of the architecture: communication and da-
ta encryption. All DOP connections are encrypted by default to ensure private
communication as well as the continuous authentication of the entity on the other
side of the connection. Connection encryption is performed either by the built-in
DOP encryption or, if the client and server allow it, using an SSL wrapper around
an unencrypted DOP connection.

Data-level encryption is also available and provides a method for encrypting
data elements so that the repository holding the objects does not need to be
trusted with access to the encrypted information. The repository's primary re-
sponsibility is making sure the encrypted data is accessible and not lost or de-
stroyed. In the current implementation, all the DO attributes are left in clear for
indexing purposes. Encryption uses a key generated by the creator. This key is
then deposited in the PDO of the creator encrypted with his/her public key. The
system could be modified to encrypt the entire object, not just the data elements,
so that adversaries couldn't access object attributes such as timestamps, crea-
tors, mime types, annotations, etc. However, this would require scalable en-
crypted indexing.

If the encrypted element deposited in the DO is shared with other identities,
the generated key is distributed to the PDOs of these identities – added to the
PDO's key ring - encrypted with their respective public keys.

28.5.1. Observations
• Testing to date has shown that the SSL wrapper is significantly slower

than the built-in DOP encryption. Further study is needed to discover how
to improve the performance of the SSL-based encryption.

• In this implementation there is no mechanism to retrieve/revoke the key
once it has been added to a PDO, therefore, there is no specific mechan-
ism to revoke the encryption privileges. Access to the encrypted object
can be discontinued by simply re-encrypting the object using a new key
(which is the recommended approach), however this doesn't cover the
case in which a user has cached a copy of the object encrypted with the
original key.

74

• Since groups do not possess a PDO structure, they can not be used for
sharing encrypted data therefore all the sharing of encrypted elements is
done at the individual identity level. In other words there is no adequate
procedure to relate groups and encrypted elements. We hope to explore
using a Proxy Re-encryption service to allow group members to access
objects shared with the group. Such a service might also be used to solve
the revocation problem as access to encrypted objects would need to oc-
cur in real-time.

• There is no high-level mechanism to add a specific key to other identities
after an element has been encrypted and deposited. This can be done
easily using the lower-level API, but is not yet supported in the high-level
API.

• Without the appropriate administrative mechanisms, the oversight of who
has an encryption key can be lost.

• Without appropriate administrative mechanisms, when certificates expire
(group membership is no longer valid), there are no high level APIs to up-
date these certificates.

28.6. Additional Testing of Repository Mirroring

To support data recovery even when a repository is compromised, mirroring

mechanisms have been implemented, but not yet tested. A few vulnerabilities
and performance issues in this regard have been identified and reported in our
Trac system. In particular, in the current repository implementation, the mirroring
mechanism relies upon a transaction log that stores the timestamp of each event.
This requires a synchronized clock for all the mirrors to work properly. Attention
must be paid to the clocks' synchronization and to the integrity of the files that
maintain the last state of the time stamps.

Furthermore, in the current implementation, no mechanism has been created
to help a client determine which server in a mirrored service is the most prefera-
ble. Such a mechanism could support load balancing; incorporating the current
handle system load balancing mechanism would seem appropriate.

28.7. Conduct Usability Studies

New paradigms in user experience are available with the DOA in terms of data

sharing, searching as the mechanism of data retrieval, and additional information
provided by metadata. After the first users interacted with the preliminary applica-
tion, it became clear that usability studies are required before a re-architecture of
the information display and accessibility is developed and implemented.

75

REFERENCES

"Handle System Technical Manual, version 2".
Corporation for National Research Initiatives . 30 June 2009
<http://www.handle.net/tech_manual/Handle_Technical_Manual.pdf >.

“Handle System Administration Tools”
Corporation for National Research Initiatives . 30 June 2009
<http://www.handle.net/handle_tool.html>

http://www.handle.net/tech_manual/Handle_Technical_Manual.pdf
http://www.handle.net/handle_tool.html

76

LIST OF ACRONYMS

DA Data attribute is a key-value pair of text strings. A data attribute

is associated with either a digital object or a data element of a
DO.

DE Data element is a key/value pair contained in a digital object,
where the key is used to uniquely address the element within a
digital object and the value is a series of bytes.

DO Digital object is an abstract digital entity consisting of a set of
key/value pairs, one of which is its unique identifier. A digital ob-
ject repository enables operations to be applied to a given set of
digital objects, e.g., all or some of the values may be retrieved
or manipulated.

DOR Digital Object Repository acts as a container for digital objects.
A DOR authenticates clients and determines which clients are
permitted to perform which operations on the digital objects it
contains. A DOR also acts as a host for "operators" that per-
form operations on objects.

Keychain A keychain is a list of encrypted symmetric keys, stored across
one or more data elements within a personal digital object
(PDO). The keys have been encrypted using the public key as-
sociated with the PDO and can only be decrypted by the holder
of the associated private key. In most cases, any user is al-
lowed to append keys to other user's key chains. When the
owner of the PDO encounters an encrypted object or data ele-
ment, they can check their keychain for a key that is able to de-
crypt the object or data element.

Object ID A digital object identifier (DO identifier) is a unique Unicode text
string that can be resolved to locate a repository through which
the client can interact with the DO being identified.

PDO Personal digital object is a digital object that represents an indi-
vidual. It can contain a keychain, a set of group membership
certificates, and a mapping of object IDs to user-friendly names
that is configured by the owner of the PDO.

